Abstract

Libration point orbit is playing more and more significant role in deep space exploration. X-ray pulsar-based navigation (XNAV) is a novel and promising autonomous navigation method. However, there are only a few research papers concerning how to employ XNAV in libration orbit, especially the application of integrated navigation based on XNAV. The libration orbit is unstable. It is a new research topic for us to delve deeper. To improve the autonomous navigation performance in halo orbit, an integrated navigation method was proposed. The dynamic model of halo orbit was presented. Two-level differential correction method was introduced. The measurement models of the XNAV and the ultraviolet sensor were analyzed. The federated unscented kalman filter based on UD factorization was adopted to estimate the state of the system. The clock error correction was included in the filter. The simulation results show that the proposed integrated navigation is feasible in halo orbit of Earth-Moon system, and can provide better performance in comparison with XNAV or ultraviolet sensor-based navigation. Not only can the integrated navigation obtain a highly accurate spacecraft position, but also it can restrain clock drift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.