Abstract

Semiconductor nanowires (NWs)represent an ideal system for investigating low-dimensional physics and are expected to play an important role as both interconnects and functional device elements in nanoscale electronic and optoelectronic devices. Here we review a series of key advances defining a new paradigm of bottom-up assembling integrated nanosystems using semiconductor NW building blocks. We first introduce a general approach for the synthesis of a broad range of semiconductor NWs with precisely controlled chemical composition, physical dimension, and electronic, optical properties using a metal cluster-catalyzed vapor-liquid-solid growth mechanism. Subsequently, we describe rational strategies for the hierarchical assembly of NW building blocks into functional devices and complex architectures based on electric field or micro-fluidic flow. Next, we discuss a variety of new nanoscale electronic device concepts including crossed NW p-n diode and crossed NW field effect transistors (FETs). Reproducible assembly of these scalable crossed NW device elements enables a catalog of integrated structures, including logic gates and computational circuits. Lastly, we describe a wide range of photonic and optoelectronic devices, including nanoscale light-emitting diodes (nanoLEDs), multicolor LED arrays, integrated nanoLED-nanoFET arrays, single nanowire waveguide, and single nanowire nanolaser. The potential application of these nanoscale light sources for chemical and biological analyses is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.