Abstract

Recent calculations and experimental data suggest that understanding the local ordering behavior of Ni/Mn will be critical to optimize the electrochemical properties of LiNi0.5Mn1.5O4 (LNMO) high voltage spinel. In this study, we systematically controlled the evolution of Ni and Mn ordering in LNMO samples by annealing them at 700 °C in air for different dwelling times, followed by quenching to room temperature. The long- and short-range ordering behavior of Ni and Mn were analyzed by combining neutron powder diffraction, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) data. The results show that the fraction of ordered phase increases rapidly during initial annealing at 700 °C for 6 h, and accompanied by decreasing amounts of secondary phases. Annealing longer than 6 h led to the growth in size of ordered domains (i.e., increased segregation of ordered and disordered domains) along with a slow increase in the fraction of ordered ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.