Abstract
Sea cucumbers and sea urchins are promising candidates for aquaculture since they are high market value and low-trophic organisms. However, although they often co-exist in many marine habitats showing feeding interactions, there is currently a lack of investigations available regarding the co-culture of these organisms in Integrated Multi-Trophic Aquaculture (IMTA). The present study investigated, for the first time, the laboratory-scale feasibility of an integrated aquaculture between P. lividus and H. tubulosa, two of the most valuable Mediterranean echinoderms, through a four-month experiment.More specifically, three food sources with different fish meal concentrations were tested separately to sustain the integrated production in a land-based RAS (Recycling aquaculture system) of both co-cultured species: 1) completely vegetable diet (D-0), 2) vegetable diet with 20% of fish meal (D-20) and 3) vegetable diet with 40% of fish meal (D-40). Among these experimental diets D-20 (with 20% of fish meal supplement) was consumed more efficiently and sustained high growth rates for both co-cultured species. However, significant growth was detected with all experimental diets, indicating successful integrated aquaculture between sea urchins and sea cucumbers. The present study, therefore, suggested the existence of substantial benefits of an integrated aquaculture between these echinoderm species, that could promote the environmental and economic sustainability of their production on a large-scale. Our results showed, in fact, that less than 24% of the organic matter administered with the food remained as waste in our IMTA system after being ingested by the two trophic levels. The sea urchins ingested 87% of the food administered, absorbing 64% of the organic matter, whilst in the second step, the sea cucumbers consumed 54% of organic matter present in the sea urchin feces. Hence the aquaculture model investigated here was highly effective in reducing the total waste, at the same time providing added value in the form of sea cucumber biomass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.