Abstract

Data-driven research led by computational systems biology methods, encompassing bioinformatics of multiomics datasets and mathematical modeling, are critical for discovery. Herein, we describe a multiomics (metabolomics-fluxomics) approach as applied to heart function in diabetes. The methodology presented has general applicability and enables the quantification of the fluxome or set of metabolic fluxes from cytoplasmic and mitochondrial compartments in central catabolic pathways of glucose and fatty acids. Additionally, we present, for the first time, a general method to reduce the dimension of detailed kinetic, and in general stoichiometric models of metabolic networks at the steady state, to facilitate their optimization and avoid numerical problems. Representative results illustrate the powerful mechanistic insights that can be gained from this integrative and quantitative methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.