Abstract

Zinc deficiency is a worldwide public health problem. Currently, there are no established biomarkers available for the accurate diagnosis of zinc-deficiency in individuals. Additionally, a comprehensive view of the adverse effects of zinc deficiency is lacking. Our aim was to identify superior biomarkers of zinc deficiency and uncover the adverse effects of zinc deficiency. We performed multi-omics analysis using serum proteomics-metabolomics and liver proteomics on zinc-deficient rats to identify candidate biomarkers and reveal the associated adverse effects of zinc deficiency. Secondly, the candidate biomarkers were validated in two zinc-deficient populations and an RCT zinc supplementation trial on a zinc-deficient population. Our integrated multi-omics approach revealed numerous biomarkers (>2000) and glutathione metabolism as the most important changed pathway in zinc deficiency. Three candidate biomarkers from glutathione metabolism were validated in repeated zinc-deficient rats by quantitative analysis. Only glutathione sulfotransferase omega-1 (GSTO1) (among 3 candidate biomarkers) was validated in the two zinc-deficient populations and zinc-supplemented population. Compared with serum zinc, serum GSTO1 yielded a better response to zinc supplementation and a higher correlation coefficient with zinc intake and the AUC value and has the potential for diagnosing zinc deficiency. By integrated multi-omics, we identified both established and novel adverse effects of zinc deficiency. Our integrated multi-omics analysis revealed more complete information about zinc deficiency; GSTO1 was found to be a reliable potential biomarker for diagnosis of zinc deficiency. This trial is registered at http://www.chictr.org.cn/registry.aspx as ChiCTR1900028162.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call