Abstract

Using online information resources to build knowledge bases to provide knowledge answering services would help auto companies or third-party platforms to gain competitive advantages. Therefore, a construction plan of automobile maintenance expert system based on knowledge graph was proposed by integrated modelling. In terms of the entity recognition algorithm, the BM LSTM (Boyer-Moore Long Short-Term Memory) algorithm was proposed by integrating hidden Markov model, Conditional Random Field (CRF), Bi-directional Long Short-Term Memory (BiLSTM), BiLSTM-CRF and Lattice LSTM, which improved the accuracy index F1-score. In terms of the text quality evaluation algorithm, a secondary text quality evaluation system was designed. It evaluated the matching quality of the problem based on the word toolkit Synonyms and Levenshtein Distance algorithm. And it evaluated the quality of the answer text based on the TF-IDF (Term Frequency-Inverse Document Frequency) similarity algorithm and centered on completeness, accuracy, reliability, and argument strength. Finally, experiments are carried out on the proposed model and algorithm to prove its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.