Abstract

This paper presents the integrated modelling and multi-objective optimization of ORC based on radial inflow turbine. With this approach it is possible to replace the constant turbine efficiency with a dynamic efficiency that is unique for each set of cycle operating conditions and working fluid properties. This allows overcoming any arbitrary assumption of the turbine efficiency, unlike the previous literature, and providing a more realistic estimation of the cycle performance. Parametric studies were conducted utilizing the developed model to identify the key input variables that have significant effects on the critical turbine-ORC performance indicators. These variables were then included in the optimization process using DIRECT algorithm to optimize two objective functions as the cycle thermal efficiency and the turbine overall size for five organic fluids. Optimization results predicted that isobutane exhibited the best performance with the maximum cycle thermal efficiency of 13.21% and turbine overall size of 0.1434m while having relatively high turbine isentropic efficiency of 77.03%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call