Abstract

Integrating new functions into the aircraft can, for example, increase performance or reduce fuel consumption. Since the installation of such additional functions increases the overall aircraft complexity, it is crucial to adapt methods and tools that support the development and ensure traceability, consistency, and verifiability. In this context, model-based systems engineering and the associated Systems Modeling Language (SysML) have been established as a standard methodology. This paper presents an overview of a system development and modeling process with SysML at the concept design stage using a position-variable shock control bumps system as an example. In addition to the system modeling, safety and reliability analyses have to be considered during the design process. To keep both, the model and the associated safety assessment consistent, this work introduces an extension of SysML to enable the execution of a functional hazard assessment (FHA) according to the ARP4754A and ARP 4761 guidelines. This is the first step in conducting a model-based safety assessment. Furthermore, a modeling process with concepts management methods is performed. In summary, the presented modeling process consists of three main parts: the system modeling, functional hazard assessment and concept management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.