Abstract

The overall performance of an all-optical packet switching system is usually determined by two criteria, i.e., switching latency and packet loss rate. In some real-time applications, however, in which packets arriving later than a timeout period are discarded as loss, the packet loss rate becomes the most dominant criterion for system performance. Here we focus on evaluating the performance of all-optical packet switches in terms of the packet loss rate, which normally arises from the insufficient hardware or the degradation of an optical signal. Considering both aspects, we propose what we believe is a new analysis model for the packet loss rate that reflects the complicated interactions between physical impairments and system-level parameters. On the basis of the estimation model for signal quality degradation in a multihop path we construct an equivalent analysis model of a switching network for evaluating an average bit error rate. With the model constructed we then propose an integrated model for estimating the packet loss rate in three architectural examples of multihop packet switches, each of which is based on a different switching concept. We also derive the bounds on the packet loss rate induced by bit errors. Finally, it is verified through simulation studies that our analysis model accurately predicts system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call