Abstract

Introduction. The “Smart Agroˮ committee of Research and Education Center “Engineering of the Future” has identified a number of tasks relevant for improving the efficiency of precision, soil-protecting and conservation agriculture. One of these tasks is the development of a digital multi-agent system, which provides a number of services for agricultural enterprises, developers and manufacturers of agricultural machinery. The purpose of the present study is to model an autonomous mobile robotic platform, including the development of software and hardware for trajectory control. Materials and Methods. To solve the problem, there are used modern CAx systems and their applications, the methods of 3D and full-body modeling, and the method of numerical solution of problems in solid mechanics. To expand and improve the standard functionality of CAx-systems (SolidWorks) in the software implementation of trajectory control algorithms, the methods and technologies of programming using API SolidWorks, VisualStudio C++ (MFC, ATL, COM) are used, and to build physical full-scale models ‒ Arduino and fischertechnik platforms. Results. The result of the study is a software and hardware module of trajectory control for an integrated (physical and virtual) model of a mobile robotic platform, which can be provided to the consumer as a service for technology autonomation. For the developed integrated model, control algorithms for various types of trajectories were tested. Discussion and Conclusion. The developed integrated software and hardware model of trajectory control can be used by developers and manufacturers of agricultural machinery, and directly by agro-enterprises for implementing typical technological processes. A feature of the implementation is an open hardware and software interface that provides the integration of mobile robotic platforms based on a digital multi-agent system.

Highlights

  • The “Smart Agrocommittee of Research and Education Center “Engineering of the Future” has identified a number of tasks relevant for improving the efficiency of precision, soil-protecting and conservation agriculture. One of these tasks is the development of a digital multi-agent system, which provides a number of services for agricultural enterprises, developers and manufacturers of agricultural machinery

  • The purpose of the present study is to model an autonomous mobile robotic platform, including the development of software and hardware for trajectory control

  • The result of the study is a software and hardware module of trajectory control for an integrated model of a mobile robotic platform, which can be provided to the consumer as a service for technology autonomation

Read more

Summary

Fog-1M self-propelled base and layout model for robot chassis

Driveij установлены попар- за управление роботом. Таким образом но на каждой подвеске и обеспечивают задается угол Аккермана и моделиуниверсальность модели мобильного руется функция механического дифробота для наиболее общего случая ференциала. В случае классического варианта в качестве целевой точки рассматривается срединная точка задней оси с координатами xc и yc, ориентация робота задается углом θ между центральной осью платформы и осью x. 2. Результаты численного моделирования для вывода и стабилизации движения робота по прямолинейной траектории. На рисунке 3 показаны результаты численного эксперимента при λ = 1, X0 = (10, 20) м, заданном радиусе окружности R = 12 м. 3. Результаты численного моделирования для вывода и стабилизации движения робота по окружности. В качестве фазовых переменных примем z1 – расстояние от целевой точки до целевой траектории CA, z2 = tg(ψ), при этом управление формируется согласно результатам, представленным в работе А. 0. В рассматриваемой постановке исходная задача траекторного управления в целом не разделяется для реального робота, его натурной и виртуальной моделей, за исключением лишь способов определения фазовых переменных z1 и z2. – модуль визуальной одометрии состоит из двух цифровых камер, определяющих смещение и поворот платформы в пространстве на основе данных с камер8 [25];

SOLIDWORKS API
Physical model for mobile robot
Application window
Accessing to model features
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.