Abstract

The precise mechanisms underlying pathogenesis of different subtypes of chronic rhinosinusitis with nasal polyps (CRSwNP) are still unclear. Emerging evidence indicates that microRNAs may play a role in the pathogenesis of CRSwNP. This study aimed to identify the dysregulated microRNA-messenger RNA (miRNA-mRNA) regulatory networks in eosinophilic (E) and non-eosinophilic (non-E) CRSwNP. Whole-transcriptome sequencing was performed on nasal tissues of patients with ECRSwNP and non-ECRSwNP, and control subjects. An integrated analysis of miRNA and mRNA expression was conducted to identify key mRNAs and miRNAs involved in the pathogenesis of ECRSwNP and non-ECRSwNP. The miRNAs of interest and their target genes were validated using quantitative real-time polymerase chain reaction (PCR). A group of differentially expressed mRNAs (DE-mRNAs) and miRNAs (DE-miRs) were identified in ECRSwNP patients vs control subjects, non-ECRSwNP patients vs control subjects, and non-ECRSwNP vs ECRSwNP patients, respectively. Pathway enrichment analysis showed distinct immune and inflammatory functions associated with DE-mRNAs and target genes of DE-miRs in ECRSwNP vs control and non-ECRSwNP vs control groups. The miRNA-mRNA regulatory networks constructed with Cytoscape highlighted the roles of miR-154, miR-221, and miR-223 family miRNAs relating to both ECRSwNP and non-ECRSwNP, and the roles of the let-7 and miR-34/449 families in the development of non-ECRSwNP. Assessment using real-time PCR for the expression of miRNAs and target genes demonstrated highly consistent data with the RNA sequencing data. ECRSwNP and non-ECRSwNP patients express distinct miRNA-mRNA regulatory networks compared with control subjects, thus providing potential targets for future development of novel therapeutic approaches for the management of CRSwNP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call