Abstract

Antibody affinity maturation proceeds in vivo via a combination of point mutations, insertions, deletions, and combinatorial shuffling of light chains or portions of the heavy chain, thereby reducing the probability of trapping in local affinity optima in sequence space. In vivo homologous recombination in yeast can be exploited to mimic the broad spectrum of mutational types deployed by B cells, incorporating both receptor revision and receptor editing together with polymerase-directed point mutagenesis. This method was used to effect a 10,000-fold affinity improvement in an anti-peptide single-chain antibody in three rounds of mutagenesis and screening, and a 1,000-fold affinity improvement in an anti-protein single-chain antibody in a single round. When recombinational mutagenesis (CDR or chain shuffling) was directly compared to error-prone PCR, the recombinational approach yielded greater affinity improvement with substantially reduced divergence from germline sequences, demonstrating an advantage of simultaneously testing a broad range of mutational strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.