Abstract

BackgroundTartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs) have been identified as the important negative regulators of gene expression and performed crucial regulatory roles in various plant biological processes. However, whether miRNAs participate in Tartary buckwheat seed development remains unexplored.ResultsIn this study, we first identified 26 miRNA biosynthesis genes in the Tartary buckwheat genome and described their phylogeny and expression profiling. Then we performed small RNA (sRNA) sequencing for Tartary buckwheat seeds at three developmental stages to identify the miRNAs associated with seed development. In total, 230 miRNAs, including 101 conserved and 129 novel miRNAs, were first identified in Tartary buckwheat, and 3268 target genes were successfully predicted. Among these miRNAs, 76 exhibited differential expression during seed development, and 1534 target genes which correspond to 74 differentially expressed miRNAs (DEMs) were identified. Based on integrated analysis of DEMs and their targets expression, 65 miRNA-mRNA interaction pairs (25 DEMs corresponding to 65 target genes) were identified that exhibited significantly opposite expression during Tartary buckwheat seed development, and 6 of the miRNA-mRNA pairs were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) and ligase-mediated rapid amplification of 5′ cDNA ends (5′-RLM-RACE). Functional annotation of the 65 target mRNAs showed that 56 miRNA-mRNA interaction pairs major involved in cell differentiation and proliferation, cell elongation, hormones response, organogenesis, embryo and endosperm development, seed size, mineral elements transport, and flavonoid biosynthesis, which indicated that they are the key miRNA-mRNA pairs for Tartary buckwheat seed development.ConclusionsOur findings provided insights for the first time into miRNA-mediated regulatory pathways in Tartary buckwheat seed development and suggested that miRNAs play important role in Tartary buckwheat seed development. These findings will be help to study the roles and regulatory mechanism of miRNAs in Tartary buckwheat seed development.

Highlights

  • Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways

  • These pri-miRNAs are further cleaved into miRNA::miRNA* duplexes under the action of DCL1, HYPONASTIC LEAVES1 (HYL1) and SE protein complex, and the 3 ́ end of the duplexes are methylated by the methyltransferase HUA ENHANCER1 (HEN1) [5]

  • As the first and most important step in studying the miRNA in Tartary buckwheat, we identified the orthologs of these genes in Tartary buckwheat

Read more

Summary

Introduction

Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs), a class of endogenous noncoding small RNAs (sRNAs) that are 20–24 nt in length, play crucial regulatory functions in animals and plants by repressing their target genes expression at the transcription or post-transcription level [1,2,3,4]. The pri-miRNAs are processed into miRNA precursors (pre-miRNAs) with stem-loop structures by the DICER-LIKE1 (DCL1), HYPONASTIC LEAVES1 (HYL1) and SERRATE (SE) protein complex [5,6,7]. MiRNAs have been identified in numerous plants, and more and more evidence indicates that they play crucial roles in plant growth and development, secondary metabolism, biotic and abiotic stress tolerance, and signal transduction [4, 10,11,12,13,14,15,16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call