Abstract

Ovarian cancer (OvCa) is among the most severe gynecologic cancers, yet individuals may be asymptomatic during its early stages. Routine, early screening for genetic abnormalities associated with OvCa could improve prognoses, and this can be achieved by detecting mutant genes in cell-free DNA (cfDNA). Herein, we developed an integrated microfluidic chip (IMC) that could extract cfDNA from plasma and automatically detect and quantify mutations in the OvCa biomarker BRCA1. The cfDNA extraction module relied on a vortex-type micromixer to mix cfDNA with magnetic beads surface-coated with cfDNA probes and could isolate 76% of molecules from a 200 μL plasma sample in 45 min. The cfDNA quantification module, which comprised a micropump that evenly distributed 4.5 μL of purified cfDNA into the on-chip, allele-specific quantitative polymerase chain reaction (qPCR) zones, was capable of quantifying mutant genes within 90 min. By automating the cfDNA extraction and qPCR processes, this IMC could be used for clinical screening for OvCa-associated mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.