Abstract

In this paper, we present a novel image operator to extract textual information in natural scene images. First, a powerful refiner called the Stroke Color Extension, which extends the widely used Stroke Width Transform by incorporating color information of strokes, is proposed to achieve significantly enhanced performance on intra-character connection and non-character removal. Second, a character classifier is trained by using gradient features. The classifier not only eliminates non-character components but also remains a large number of characters. Third, an effective extractor called the Character Color Transform combines color information of characters and geometry features. It is used to extract potential characters which are not correctly extracted in previous steps. Fourth, a Convolutional Neural Network model is used to verify text candidates, improving the performance of text detection. The proposed technique is tested on two public datasets, i.e., ICDAR2011 dataset and ICDAR2013 dataset. The experimental results show that our approach achieves state-of-the-art performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.