Abstract

Tea is one of the most popular beverages, it has many health benefits and flavor properties due to the presence of numerous secondary metabolites. Camellia assamica is also a main source of tea, which is mainly planted in the regions of southwest China. In this study, a non-targeted and targeted metabolomics analysis and sensory evaluation on tea leaves with and without mistletoe (Viscum articulatum) was carried out using liquid chromatography-mass spectrometry. RNA-seq-based transcriptomic analysis was conducted in parallel on the same samples, subsequently gene expression and metabolic differentiation were also investigated. Tea leaves with mistletoe presented much lower contents of (−)-catechin, (−)-epicatechin, (−)-gallocatechin gallate and (−)-epicatechin gallate, but significantly higher levels of free amino acids including Arg, Asp, GABA and Gln than that without mistletoe. Transcriptomic analysis also confirmed the main differentially expressed genes (DEGs) containing phenylpropanoid and flavonoid biosynthesis were down-regulated, but genes of amino acid biosynthesis were up-regulated. qRT-PCR analysis further revealed that the relative expression of CsCHS, CsC4H, CsANS, CsLAR, and CsF3H was hindered, while CsglyA and CsilvE expression was increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call