Abstract

BackgroundThe objective of this study was to reveal the flavonoid biosynthesis pathway in white (Z6), red (Z27) and black (HC4) seeds of the sweet sorghum (Sorghum bicolor) using metabolomics and transcriptomics, to identify different flavonoid metabolites, and to analyze the differentially expressed genes involved in flavonoid biosynthesis.ResultsWe analyzed the metabolomics and transcriptomics data of sweet sorghum seeds. Six hundred and fifty-one metabolites including 171 flavonoids were identified in three samples. Integrated analysis of transcriptomics and metabolomics showed that 8 chalcone synthase genes (gene19114, gene19115, gene19116, gene19117, gene19118, gene19120, gene19122 and gene19123) involved in flavonoid biosynthesis, were identified and play central role in change of color. Six flavanone including homoeriodictyol, naringin, prunin, naringenin, hesperetin and pinocembrin were main reason for the color difference.ConclusionsOur results provide valuable information on the flavonoid metabolites and the candidate genes involved in the flavonoid biosynthesis pathway in sweet sorghum seeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call