Abstract

ObjectiveNatural product berberine was reported to inhibit platelet activation and thrombosis by suppressing the class Ⅰ PI3Kβ/Rasa3/Rap1 pathway. This study aims to investigate the effects and mechanisms of berberrubine, a main metabolite of berberine, to inhibit thrombus formation. MethodsCarrageenan-induced mouse tail thrombosis model was used to evaluate the effects of berberrubine hydrochloride (BBB) on thrombus formation in vivo. Non-targeted metabolomics was performed with UPLC-Q-TOF/MS to explore the potential mechanisms of BBB in inhibiting thrombosis. The effects of BBB on bleeding risk and prothrombin time were determined. And molecular docking was used to identify the possible target of BBB. ResultsAfter oral administration, BBB significantly inhibited carrageenan-induced thrombosis in mice without prolonging bleeding time. The results of non-targeted metabolomics showed that oral BBB could regulate ‘Phenylalanine, tyrosine and tryptophan biosynthesis’ and ‘Ubiquinone and other terpenoid-quinone biosynthesis’, which is closely related to the vitamin K catalytic cycle. Molecular docking revealed BBB could combine and interact with vitamin K epoxide reductase (VKOR) and γ-Glutamyl carboxylase (GGCX), which was mutually confirmed with the experimental results that oral BBB could significantly prolong prothrombin time. ConclusionsIntegrated metabolomics and molecular docking reveal BBB inhibited thrombosis by regulating the vitamin K catalytic cycle. Our research is helpful in deeply understanding the antithrombotic material basis of oral berberine, and also could provide scientific evidence for developing new antithrombotic drugs based on BBB in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call