Abstract

BackgroundThe color of endopleura is a vital factor in determining the economic value and aesthetics appeal of nut. Walnuts (Juglans) are a key source of edible nuts, high in proteins, amino acids, lipids, carbohydrates. Walnut had a variety endopleura color as yellow, red, and purple. However, the regulation of walnut endopleura color remains little known.ResultsTo understand the process of coloration in endopleura, we performed the integrative analysis of transcriptomes and metabolomes at two developmental stages of walnut endopleura. We obtained total of 4,950 differentially expressed genes (DEGs) and 794 metabolites from walnut endopleura, which are involved in flavonoid and phenolic biosynthesis pathways. The enrichment analysis revealed that the cinnamic acid, coniferyl alcohol, naringenin, and naringenin-7-O-glucoside were important metabolites in the development process of walnut endopleura. Transcriptome and metabolome analyses revealed that the DEGs and differentially regulated metabolites (DRMs) were significantly enriched in flavonoid biosynthesis and phenolic metabolic pathways. Through co-expression analysis, CHS (chalcone synthase), CHI (chalcone isomerase), CCR (cinnamoyl CoA reductase), CAD (cinnamyl alcohol dehydrogenase), COMT (catechol-Omethyl transferase), and 4CL (4-coumaroyl: CoA-ligase) may be the key genes that potentially regulate walnut endopleura color in flavonoid biosynthesis and phenolic metabolic pathways.ConclusionsThis study illuminates the metabolic pathways and candidate genes that underlie the endopleura coloration in walnuts, lay the foundation for further study and provides insights into controlling nut’s colour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call