Abstract

SummaryCooling water systems (CWS) are one of the main energy and water using operations in industry. Existing CWS in operation provide high improvement potentials in environmental and economic performance through optimized operation and system control. Industry often fails to realize these potentials, given that the efficiency measures as well as their technical, economic, and ecological impact are mostly unknown because of the lack of appropriate approaches. This article presents a holistic approach to the systematic identification and assessment of efficiency measures that support industry in improving the operation and system control of large‐scale CWS consisting of one or multiple cooling towers, heat exchangers, and pumps. Based on material flow analysis coupled with process modeling, a material and energy flow model of CWS is developed. The model enables the investigation of different adjustments in operation of CWS in order to identify and assess specific efficiency measures. The approach is applied to a CWS of a real manufacturing facility. The results show, first, high validity of the approach as compared to a real system. Second, the effectiveness of the approach, given that the model allows fast and simple identification and assessment of efficiency measures that save up to 16% energy and 24% water in the presented case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.