Abstract
AbstractAs more and more people live near the sea, future flood risk must be properly assessed for sustainable urban planning and coastal protection. However, this is rarely the case in developing countries where there is a lack of both in-situ data collection and forecasting tools. Here, we consider the case of the Kapuas River Delta (KRD), a data-scarce delta on the west coast of Borneo Island, Indonesia. We assessed future flood risk under three climate change scenarios (RCP2.6, RCP4.5, and RCP8.5). We combined the multiple linear regression and the GIS-based bathtub inundation models to assess the future flood risk. The former model was implemented to model the river's water-level dynamics in the KRD, particularly in Pontianak, under the influence of rainfall changes, surface wind changes, and sea-level rise. The later model created flood maps with inundated areas under a 100-year flood scenario, representing Pontianak's current and future flood extent. We found that about 6.4%–11.9% more buildings and about 6.8%–12.7% more roads will be impacted by a 100-year flood in 2100. Our assessment guides the local water manager in preparing adequate flood mitigation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.