Abstract
We perform an ex-ante life cycle assessment, integrating cradle-to-gate greenhouse gas emissions into an off-grid energy system model. By applying a multi-objective optimization, minimizing both costs and carbon dioxide equivalent (CO2e) emissions, we find the Pareto boundary between these two goals. As a case study, we chose the power supply to an astronomical observatory in Chile, using mostly solar power and energy storage in batteries and hydrogen. We compare the ex-ante study to a prior ex-post life cycle assessment, and furthermore dive into sensitivities of our model regarding component lifetimes and costs. We find (i) low-hanging fruit in lowering emissions with small cost increases, (ii) ex-ante life cycle assessments’ possibility to find less CO2e intensive power systems compared to ex-post conducted studies, (iii) a pronounced sensitivity of the optimization model on assumed lifetimes of energy storage components. This study shows the importance of including life cycle CO2e emissions into the optimization objective of energy system models. This method uncovers the environmental and economic trade-offs associated with high shares of renewable energies in off-grid energy systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.