Abstract

An integrated lateral flow test strip with an electrochemical sensor (LFTSES) device with rapid, selective, and sensitive response for quantification of exposure to organophosphorus (OP) pesticides and nerve agents has been developed. The principle of this approach is based on parallel measurements of postexposure and baseline acetylcholinesterase (AChE) enzyme activity, where reactivation of the phosphorylated AChE is exploited to enable measurement of the total amount of AChE (including inhibited and active) which is used as a baseline for calculation of AChE inhibition. Quantitative measurement of phosphorylated adduct (OP-AChE) was realized by subtracting the active AChE from the total amount of AChE. The proposed LFTSES device integrates immunochromatographic test strip technology with electrochemical measurement using a disposable screen printed electrode which is located under the test zone. It shows a linear response between AChE enzyme activity and enzyme concentration from 0.05 to 10 nM, with a detection limit of 0.02 nM. On the basis of this reactivation approach, the LFTSES device has been successfully applied for in vitro red blood cells inhibition studies using chlorpyrifos oxon as a model OP agent. This approach not only eliminates the difficulty in screening of low-dose OP exposure because of individual variation of normal AChE values but also avoids the problem in overlapping substrate specificity with cholinesterases and avoids potential interference from other electroactive species in biological samples. It is baseline free and thus provides a rapid, sensitive, selective, and inexpensive tool for in-field and point-of-care assessment of exposures to OP pesticides and nerve agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.