Abstract
This study considers the problem of inventory and scheduling decisions on a reusable transport item (RTI) sharing platform with the collaborative recovery of used RTIs and replenishment of products in a two-tier container management centre (CMC). The products (packaged as full RTIs) are pre-positioned at the regional CMC (R-CMC), and empty RTIs are stored at the CMC hub. Moreover, the CMC replenishes the products and recycles RTIs respectively and periodically. The RTI and products are a set of complementary products, and the replenishment task requires sufficient empty RTIs in stock. Untimely and insufficient RTI returns without considering product inventory changes often result in RTI out-of-stock situations that harm the customer's lean productivity. This paper proposes a machine learning and simulation optimisation (MSO) decision framework to collaboratively assist RTI inventory and scheduling decisions in a two-tier CMC. Based on a case study, we can conclude the decision framework has better performance on the profitability and inventory control capability. Moreover, different inventory and scheduling parameter settings in the two-tier CMCs impact the platform's profitability to derive corresponding management insights, and a decision system can be built based on the above framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.