Abstract

Considerable interest has been paid in recent literature to codes combining local and global properties for erasure correction. Applications are in cloud type of implementations, in which fast recovery of a failed storage device is important, but additional protection is required in order to avoid data loss, and in RAID type of architectures, in which total device failures coexist with silent failures at the page or sector level in each device. Existing solutions to these problems require in general relatively large finite fields. The techniques of integrated interleaved codes which are closely related to generalised concatenated codes are proposed to reduce significantly the size of the finite field, and it is shown that when the parameters of these codes are judiciously chosen, they outperform codes optimising the minimum distance with respect to the average number of erasures that the code can correct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.