Abstract
AbstractIn this study, an efficient soft computing paradigm is presented for solving Bagley–Torvik systems of fractional order arising in fluid dynamic model for the motion of a rigid plate immersed in a Newtonian fluid using feed-forward fractional artificial neural networks (FrANNs) and sequential quadratic programming (SQP) algorithm. The strength of FrANNs has been utilized to construct an accurate modeling of the equation using approximation theory in mean square error sense. Training of weights of FrANNs is performed with SQP techniques. The designed scheme has been examined on different variants of the systems. The comparative studies of the proposed solutions with available exact as well as reference numerical results demonstrate the worth and effectiveness of the solver. The accuracy, consistency, and complexity are evaluated in depth through results of statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.