Abstract
Single-particle (or digital) measurements enhance sensitivity (10- to 100-fold improvement) and uncover heterogeneity within a population (one event in 100 to 10,000). Many biological systems are significantly influenced by rare or infrequent events, and determining what species is present, in what quantity, and the role of that species is critically important to unraveling many questions. To develop these measurement systems, resistive-pulse sensing is used as a label-free, single-particle detection technique and can be combined with a range of functional elements, e.g., mixers, reactors, filters, separators, and pores. Virtually, any two-dimensional layout of the micro- and nanofluidic conduits can be envisioned, designed, and fabricated in the plane of the device. Multiple nanopores in series lead to higher-precision measurements of particle size, shape, and charge, and reactions coupled directly with the particle-size measurements improve temporal response. Moreover, other detection techniques, e.g., fluorescence, are highly compatible with the in-plane format. These integrated in-plane nanofluidic devices expand the toolbox of what is possible with single-particle measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual review of analytical chemistry (Palo Alto, Calif.)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.