Abstract

Purpose. Improving the efficiency of the system by increasing the accuracy in determining the drilling objects spatial orientation, as well as adjusting the system components to more accurately isolate the information signal from the angle transducer. Methodology. A comprehensive increase in the angle transducer accuracy is based on taking into account the influence of factors and errors in determining the drilling objects spatial orientation, as well as a possibility of smoothly tuning the characteristics of the receiving part due to the departure of the information modulated signal frequency from the angle transducer. Findings. Given the converters operating condition, the error in measuring the zenith angle (deviation angle from the vertical) does not exceed 0.3, the installation angle of the deflector is 3. In addition, restructuring the frequency-dependent components characteristics of the systems receiving part allows one to make changes quickly and improve the overall system. Originality. A comprehensive solution to the problem of increasing the control system efficiency is to increase the converter characteristics, by taking into account its errors and operating conditions, as well as increasing the smoothness and tuning the characteristics efficiency of the receiving part, due to the possibility of calculating the transfer function coefficients using simplified ratios, which will greatly simplify the process of processing information and improve the quality of inclinometric work. Practical value. This complex solution is brought to the design, manufacture and experimental converter verification, and algorithms and programs for tuning frequency-dependent components are proposed and brought to implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.