Abstract

Curvularia lunata (Wakker) Boed, the causal agent of leaf spot in maize, is prone to mutation, making it difficult to control. RNAi technology has proven to be an important tool of genetic engineering and functional genomics aimed for crop improvement. MicroRNAs (miRNAs), which act as post-transcriptional regulators, often cause translational repression and gene silencing. In this article, four small RNA (sRNA) libraries were generated from two maize genotypes inoculated by C. lunata; among these, ltR1 and ltR2 were from the susceptible variety Huangzao 4 (HZ), ltR3 and ltR4, from the resistant variety Luyuan (LY), and 2286, 2145, 1556 and 2504 reads were annotated as miRNA in these four sRNA libraries, respectively. Through the combined analysis of high-throughput sequencing, microarray hybridization and degradome, 48 miRNAs were identified as being related to maize resistance to C. lunata. Among these, PC-732 and PC-169, two new maize miRNAs discovered, were predicted to cleave mRNAs of metacaspase 1 (AMC1) and thioredoxin family protein (Trx), respectively, possibly playing crucial roles in the resistance of maize to C. lunata. To further confirm the role of PC-732 in the interaction of maize and C. lunata, the miRNA was silenced through STTM (short tandem target mimic) technology, and we found that knocking down PC-732 decreased the susceptibility of maize to C. lunata. Precisely speaking, the target gene of PC-732 might inhibit the expression of disease resistance-related genes during the interaction between maize and C. lunata. Overall, the findings of this study indicated the existence of miRNAs involved in the resistance of maize to C. lunata and will contribute to rapidly clarify the resistant mechanism of maize to C. lunata.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call