Abstract

We show that the logarithmic derivatives of the convolution heat kernels on a uni-modular Lie group are exponentially integrable. This result is then used to prove an “integrated” Harnack inequality for these heat kernels. It is shown that this integrated Harnack inequality is equivalent to a version of Wang’s Harnack inequality. (A key feature of all of these inequalities is that they are dimension independent.) Finally, we show these inequalities imply quasi-invariance properties of heat kernel measures for two classes of infinite dimensional “Lie” groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.