Abstract

Groundwater resources is one of the key water resources mobilized to support water uses of modern societies. The growing competition among water uses and complexity of faced situations requests a holistic approach able to ensure efficient answer to demands and at the same time satisfied water security. The current demands for integrated groundwater resources management drive the groundwater modelling research to focus on exploring an effective approach to simulate the full water-cycle at catchment scale. Referencing the existing modelling approaches, this paper presents an innovative approach to setting up a spatially-nested modelling system combining fully-distributed deterministic models for catchment hydrology, surface hydraulic and groundwater. The application to the low Var valley locates in the French Rivera is presented in order to validate performance of the approach and reproducibility. Confirmed by the high-quality model outputs (less than 7% difference in average) and high-level users’ satisfaction, the spatially-nested modelling approach demonstrates obvious advantages in assessing complex water processes such as stream-aquifer exchanges. Moreover, the proposed approach can be also considered as one of the promising strategy for the implementation of deterministic modelling tools in decision support systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.