Abstract

Guillain-Barré syndrome (GBS) is one of the most prominent and acute immune-mediated peripheral neuropathy, while autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmental disorders. The complete mechanism regarding the neuropathophysiology of these disorders is still ambiguous. Even after recent breakthroughs in molecular biology, the link between GBS and ASD remains a mystery. Therefore, we have implemented well-established bioinformatic techniques to identify potential biomarkers and drug candidates for GBS and ASD. 17 common differentially expressed genes (DEGs) were identified for these two disorders, which later guided the rest of the research. Common genes identified the protein-protein interaction (PPI) network and pathways associated with both disorders. Based on the PPI network, the constructed hub gene and module analysis network determined two common DEGs, namely CXCL9 and CXCL10, which are vital in predicting the top drug candidates. Furthermore, coregulatory networks of TF-gene and TF-miRNA were built to detect the regulatory biomolecules. Among drug candidates, imatinib had the highest docking and MM-GBSA score with the well-known chemokine receptor CXCR3 and remained stable during the 100 ns molecular dynamics simulation validated by the principal component analysis and the dynamic cross-correlation map. This study predicted the gene-based disease network for GBS and ASD and suggested prospective drug candidates. However, more in-depth research is required for clinical validation. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call