Abstract
Zi Yuan (ZY)-1 02D satellite simultaneously provides the low spatial resolution (LR) and narrow swath-width hyperspectral (HS) image, the moderate spatial resolution (MR) multispectral (MS) image with a wider swath width, and the high spatial resolution (HR) panchromatic (PAN) image with the same wide swath width to the MR MS. How to comprehensively integrate their complementary advantages to obtain the wide swath-width and high-fidelity HR HS image is interesting but challenging. In this paper, we propose an integrated fusion method for the HR PAN, MR MS, and LR HS images with different swath widths, to generate the optimal wide swath-width HR HS image. The proposed method is based on the encoder-decoder learning framework. In the proposed fusion framework, a novel multi-branch encoder structure with an enhanced HS-encoder module and the multilevel spatial-spectral aggregation block is designed, by considering the difference in the spatial and spectral resolution among the multi-sensor images. The experiments on synthetic and real datasets from both qualitative and quantitative aspects demonstrated the competitive performance of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.