Abstract

This paper studies the demand-capacity balancing (DCB) problem in air traffic flow management (ATFM) with collaborative multi-agent reinforcement learning (MARL). To attempt the proper ground delay for resolving airspace hotspots, a multi-agent asynchronous advantage actor-critic (MAA3C) framework is firstly constructed with the long short-term memory network (LSTM) for the observations, in which the number of agents varies across training steps. The unsupervised learning and supervised learning are then introduced for better collaboration and learning among the agents. Experimental results demonstrate the scalability and generalization of the proposed frameworks, by means of applying the trained models to resolve different simulated and real-world DCB scenarios, with various flights number, sectors number and capacity settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.