Abstract

Intrusion Detection Systems (IDSs) play a critical role in detecting malicious assaults and threats in the network system. This research work proposed a network intrusion detection technique, which combines an Adversarial Sampling and Enhanced Deep Correlated Hierarchical Network for IDS. Initially, the proposed Enhanced Generative Adversarial Networks (EGAN) method is used to raise the minority sample. A balanced dataset can be created in this way, allowing the model to completely learn the properties of minority samples while also drastically minimizing the model training time. Then, create an Enhanced Deep Correlated Hierarchical Network model by using a Bi-Directional Long Short-Term Memory (BiLSTM) to collect temporal characteristics and Cross-correlated Convolution Neural Network (CCNN) to retrieve spatial characteristics. The softmax classifier at the end of BiLSTM is used to classify intrusion data. The traditional NSL-KDD dataset is utilized for the experimentation of the proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.