Abstract
The integration of loads analysis models using so called aerodynamic influence coeffcients (AICs) is described. These AICs relate a change of normal velocity at panel control points to a change in panel pressure distribution, allowing to consider aeroelastic effects in a straight forward manner. The aerodynamic method employed for aeroelastic applications is typically the Vortex or Doublet Lattice Method, discretizing mean lifting surfaces. In this paper, the AICs are obtained by a 3D panel method, which significantly increases the geometric fidelity and accounts for previously unmodeled ight mechanical effects. These effects are verified by comparison with the Vortex Lattice Method and CFD results. Further, an interpolation scheme is required, since the AICs of 3D panel methods depend nonlinearly on the underlying flight state. The setup of a reduced order aerodynamic model for AICs (AIC-ROM), based on proper orthogonal decomposition is presented and results are assessed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.