Abstract

This paper describes a process for the fabrication and positioning of nanowires (of Au, Pd, and conjugated polymers) embedded in thin epoxy slabs. The procedure has four steps: (i) coembedding a thin film of metal or conducting polymer with a thin film of nickel metal (Ni) in epoxy; (ii) sectioning the embedded structures into nanowires with an ultramicrotome ("nanoskiving"); (iii) floating the epoxy sections on a pool of water; and (iv) positioning the sections with an external magnet to a desired location ("magnetic mooring"). As the water evaporates, capillary interactions cause the sections to adhere to the substrate. Both the Ni and epoxy can be etched to generate free-standing metallic nanowires. The average translational deviation in the positioning of two nanowires with respect to each other is 16 +/- 13 mum, and the average angular deviation is 3 +/- 2 degrees . Successive depositions of nanowires yield the following structures of interest for electronic and photonic applications: electrically continuous junctions of two Au nanowires, two Au nanowires spanned by a poly(3-hexylthiophene) (P3HT) nanowire; single-crystalline Au nanowires that cross; crossbar arrays of Au nanowires; crossbar arrays of Au and Pd nanowires; and a 50 x 50 array of poly(benzimidazobenzophenanthroline ladder) (BBL) nanowires. Single-crystalline Au nanowires can be placed on glass wool fibers or on microfabricated polymeric waveguides, with which the nanowire can be addressed optically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.