Abstract

Limited water resources and low water productivity limit the sustainable development of agriculture in northwest China. In this study, drip irrigation under plastic film was used to achieve an optimal water deficit irrigation (WDI) scheme for the cultivation of indigowoad root (Isatis tinctoria L.). Field water control experiments were conducted in 2016 and 2017. Evaluation of WDI schemes was carried out by considering five indices: water consumption, yield, water use efficiency (WUE), indigo, and (R,S)-goitrin. To enhance the reliability of results, the analytic hierarchy process (AHP) and entropy weight method (EWM) were adopted to calculate the combined weight of the evaluation index. Finally, an improved technique for order of preference by similarity to ideal solution (TOPSIS) that integrated AHP–EWM weights was used to construct a unified, comprehensive evaluation model of indigowoad root under mulched drip irrigation that would produce high yield while saving water. The evaluation results indicated that mild WD (specifically, the V1G1 treatment) was continuously exerted during the vegetative and fleshy root growth periods, which enhanced the WUE and improved the quality of indigowoad root to a certain extent without significantly reducing the yield. These results provide a scientific basis for irrigation of indigowoad in northwest China and other areas with a similar environment.

Highlights

  • Water shortage is a common problem faced by global dryland agriculture [1]

  • Jiang et al [28] used the TOPSIS model to evaluate the fruit quality of tomatoes with water treatment during different growth stages, and the results showed that the moderate water deficit (WD) at the flowering and fruiting stages of tomatoes

  • According to the evaluation results of the indicators, the V1G1 treatment achieved an organic unity of high quality, high yield, and high efficiency, which was in good agreement with the measured results

Read more

Summary

Introduction

Water shortage is a common problem faced by global dryland agriculture [1]. Northwest China, located in the hinterland of Eurasia, is a typical dryland agricultural region with a dry climate, scanty rainfall, intense evaporation, and a shortage of surface water resources. Agricultural irrigation is primarily flood irrigation from wells, and the efficiency of irrigation water use is very low [2]. Groundwater levels have fallen sharply due to severe overexploitation, and regional agricultural and ecological water requirements cannot be met under existing water resources [3]. Desertification is increasing every year, and the ecological environment continues to deteriorate. Gansu Province, one of the five northwestern provinces, is an important area for the production of Chinese medicinal materials

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call