Abstract

The landfilling of paper mill sludge (PMS) has been restricted or even banned in many countries due to the raised concern about greenhouse gas (GHG) emissions and contamination of the soil and water, calling for a sustainable PMS management approach. The potential valorization of PMS to nanomaterials combined with traditional biorefinery was examined in this work. Three types of PMS-derived cellulose nanofibrils (CNFs) were prepared and evaluated: enzymatically assisted CNF (AU: with in-house produced enzyme and CT: with commercial enzyme), mechanically pretreated CNF (BT), and chemically pretreated CNF by TEMPO oxidation (TEMPO). It was found that enzyme-assisted mechanical fibrillation-derived CNFs had a comparable average diameter (27.9 nm for AU and 22.7 nm for CT) with that produced from mechanical pretreatment (26.5 nm for BT) and TEMPO oxidation pretreatment (20.0 nm for TEMPO), and they showed the best drainage properties among the three types of CNF. The CNFs resulting from enzymatic pretreatment reduced 15% of energy consumption compared to the mechanical method and had better thermostability than TEMPO oxidation method. In addition, the on-site produced enzyme showed similar performance to the commercial enzymes towards the CNF properties. These findings provide new insights into a promising integrated strategy in engineering CNF from PMS with on-site enzyme production as a novel and sustainable approach for PMS management and valorization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call