Abstract

Arsenic (As) is a toxic metalloid posing harming the human food chain through trophic transfer. Microalgae are primary producers, ensuring bioaccumulation and biogeochemical cycling of As in water environment. They are highly efficient at removing As from the environment, making these microscopic organisms eco-friendly and money saving method in As remediation process. However, microalgal growth and As biotransformation potential relies greatly on individual and integrated environmental factors. This review scrutinizes the available literature on the As biotransformation potentials of various marine and freshwater microalgae under individual and integrated stresses of such factors. Various combinations of important factors such as temperature, salinity, concentrations of As (V) and PO43─, pH, light intensity, and length of exposure period are summarized along with the optimum conditions for different microalgae. The effects of environmental factors on microalgal growth, changes in cell shape, and the relationship between As biotransformation and other activities are discussed in detail. Time-dependent As speciation pattern by aquatic microalgae are reviewed. Conceptual models highlighting the microalgal species particularly linked with environmental factor-dependent As biotransformation mechanisms are also summarized. This review will contribute to an in depth understanding of the connection between environmental factors, As uptake, and the biotransformation mechanism of marine and freshwater microalgae from the perspective of As remediation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call