Abstract

An integrated energy system (IES) can effectively solve the energy crisis, realize multi-energy complementarity, and promote fine-grained energy development. Aiming at the low-carbon economy problem of IESs with combined heat and power (CHP), carbon capture systems (CCSs) and power-to-gas (P2G), the joint operation mode of CHP-CCS-P2G is proposed, and the output characteristics and carbon emissions of CHP units under this mode are analysed. On the supply side, a multi-objective optimization method based on compromise programming is proposed to solve the contradiction between economic and environmental objectives in the IES, and the energy operator balances economic and environmental performance to obtain the optimal configuration scheme and operation strategy. On the load side, a master-slave game energy trading strategy considering integrative demand response (IDR) is adopted to balance the interests of the energy operator and users centrally managed by the load aggregator to ensure the fairness of transactions between the two parties. The results show that the overall revenue of the energy operator decreases by 7.99 % after considering IDR. However, the carbon emissions decreased by 933.82 kg, the carbon trading revenue increased by 45.18 %, and the energy purchase cost of users decreased by 9.34 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call