Abstract

A personal-computer based model of an Integrated Energy System for Industrial Estates (IESIE) has been developed as a pre-feasibility tool: it addresses the total energy concept by combining a set of CHP plant(s), boilers, vapor-compression and absorption chillers, national grid and utility transportation system. The core of the general model is the linear programming (LP) model which takes into account the changing demand-pattern of various loads and their tariffs, standby charge of electricity, unit fuel price, equipment costs, land cost, depreciation, O & M expenses, interest rate, taxes, etc. The output of the LP model yields the minimum total operating cost, optimal sizes of the equipment and their respective operational schedules. The hot utility and cold utility transportation model estimates the economic-minimum pipe size, considering installation cost, heat loss/gain cost and pumping cost. The heat balance model finds the thermal cycle equipment sizes as well as the variation of the heat-to-power ratio with load. Finally the economic model does the cash-flow analysis to determing whether the project will yield a required rate-of-return to be economically viable. Simulations have been done using the model considering a number of sample load patterns with the prevailing cost factors in India. An after tax IRR of 20% was found for sites having load factors greater than 0·6, and up to 10 km utility transportation distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.