Abstract

High-performance active materials for energy-storage and energy-conversion applications require a novel class of electrodes: ones with a structure conducive to conductivity, large specific surface area, high porosity, and mechanical robustness. Herein, we report the design and fabrication of a new ternary hybrid aerogel. The process entails an in situ assembly of 2D WSe2 nanosheets and NiFe-LDH nanosheets on a 3D N,S-codoped graphene framework, accomplished by a facile hydrothermal method and electrostatic self-assembly technology. The obtained nanocomposite architecture maximizes synergistic effects among its three 2D-layer components. To assess the performance of this hybrid material, we deployed it as an advanced electrode in overall water splitting and in a supercapacitor. Results in both scenarios attest to its excellent electrochemical properties. Specifically, serving as a catalyst in an oxygen evolution reaction, our nanocomposite requires overpotentials of 1.48 and 1.59 V to obtain current densities of 10 and 100 mA cm-2, respectively. The hybrid material also efficiently electrocatalyzes hydrogen evolution reactions in base solution, necessitating overpotentials of -50 and -237 mV for current densities of 1.0 and 100 mA cm-2, respectively. The 3D hybrid, when applied to a symmetric supercapacitor device, achieves 125.6 F g-1 capacitance at 1 A g-1 current density. In summary, our study elucidates a new strategy to maximize efficiency via synergetic effects that is likely applicable to other 2D materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call