Abstract

BackgroundBiofertilizers are now considered to be the only alternative of chemical fertilizers which apart from their soaring cost are enhancing in pollution hazards of our environment. Increasing and extending the role of biofertilizers would reduce the need for chemical fertilizers and consequently decrease adverse environmental effects.ResultsAfter morphological and physiological characterization, 7 isolates out of 63 were selected as PGPR and seven as phosphate-solubilizing microbes (PSM). All seven PGPR exhibited indole acidic acid (IAA) production, whereas five isolates produced gibberellic acid (GA) ranging from 5.5 to 30.6 and 10.0 to 14.8 mg L−1, respectively, isolate WPR-51 have highest concentration of IAA and GA. Two isolates (WM-1 and WM-2) did not showed GA production in culture solution. Phosphate solubilizing index (SI) of seven isolates was recorded for 6 days in an incubation study. The P solubilization was also quantified through spectrophotometry and was found to range from 25 to 130.1 µg mL−1. These two isolates were further studied for their organic acid production (oxalic acid, citric acid and gluconic acids) through HPLC. The isolates PSM 202 showed higher acid production as compared to PSM-305. After biochemical screening, three PGPR (WRP-32, WRP-42 and WRP-51) and one PSM-202 were used in eight different combinations to test their effect on seed germination, seed vigor and root length in a 6-day Petri plates study. After laboratory study, a pot study was carried out, to verify the results of incubational experiment. Data were collected on root shoot length and root shoot biomass after 8 weeks of transplantation. Statistical analysis showed that among eight treatments, mixture or co-inoculation treatment (T8) (WPR-42 + WPR-51 + WPR-32 + PSM) ranked as first followed by treatment (T5) (WPR-51 + PSM) that significantly increased root shoot length and biomass as compared to un-inoculated treatment. Three PGPR isolates (WPR-42, WPR-51, WM-1) were also tested for their antifungal activity on seed germination of two wheat varieties and confirmed their antifungal activity against Rhizoctonia solani. The isolate WPR-51 and mixture of 3 isolates completely neutralized the harmful effects of Rhizoctonia solani as 100% of the seeds of both varieties germinated in these treatments.ConclusionThe integrated effect of co-inoculation treatment of selected PGPRs (WRP-32, WRP-42 and WRP-51) and PSM-202 were found better in promoting crop growth and controlling disease as compared to all others treatments.

Highlights

  • Biofertilizers are considered to be the only alternative of chemical fertilizers which apart from their soaring cost are enhancing in pollution hazards of our environment

  • Characterization and purification of plant growth-promoting rhizobacteria (PGPR) and phosphate-solubilizing microbes (PSM) bacterial isolates Seven promising PGPR and two PSM isolates were selected for laboratory and pot study (Table 1)

  • Three isolates identified as Azospirillum spp. (WPR-42, WPR-51,WM-3), two Azotobacter spp. (WPR-32,WRP-61) and one Pseudomonas (WM-3) and one Entobactor spp. (WM-1), whereas PSM isolates, one as Bacillus spp. (PSM-202) and one as Pseudomonas spp. (PSM-305)

Read more

Summary

Introduction

Biofertilizers are considered to be the only alternative of chemical fertilizers which apart from their soaring cost are enhancing in pollution hazards of our environment. Increasing and extending the role of biofertilizers would reduce the need for chemical fertilizers and decrease adverse environmental effects. Regardless of a record increase in agricultural productivity during the twentieth century, the world faces insecurity in global food security. The most critical issue is the predicted increase in world population that is expected to go up from the current 6.8 billion to 9.0 billion people by 2050. The beneficial plant–microbes interactions in the rhizosphere are determinants of plant health, soil fertility recycling of nutrients [1]. These interactions play a pivotal role in transformation, mobilization, solubilization, etc. Soil bacterial isolates from rhizosphere which have been shown to improve plant health or increase yield are usually referred to as plant growth-promoting rhizobacteria (PGPR)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call