Abstract
ABSTRACTAgricultural terraces are important for agricultural production and soil-and-water conservation. They comprise treads and risers that require manual construction and maintenance. If managed improperly, risers will collapse, causing soil loss, gully erosion, and cultivation threats. However, mapping terrace risers remains a challenge. This study presents a novel approach to automatically map terrace risers by combining remote sensing images and digital elevation models (DEMs). First, a terraced hillslope was extracted via a hill-shading method and edges in the image were detected using a Canny edge detector. Next, the DEM was used to generate the contour direction, and edges along this direction were searched and coded as candidate terrace risers via directional detection. Finally, the results of directional detection and the edge image obtained from the Canny detector were overlaid to backtrack complete terrace risers. The approach was validated using four study areas with different topographic characteristics in the Loess Plateau, China. The results verify that the approach achieves outstanding performance and robustness in mapping terrace risers. The precision, recall, and F-measure were 90.81%–97.57%, 88.53%–94.10%, and 90.13%–95.80%, respectively. This approach is flexible and applicable with freely available images and DEM sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Geographical Information Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.