Abstract

The growth of urbanization worldwide has contributed to the deterioration of the ecological status of water bodies. Efforts at improving the ecological status have been made either in isolated form or by means of integrated measures by stakeholders, but in many cases, these measures have not been evaluated to determine their benefit. In this study, we implemented a scenario analysis to restore the ecological water quality in the Cuenca River and its tributaries, which are located in the southern Andes of Ecuador. For this analysis, an integrated ecological model (IEM) was developed. The IEM linked an urban wastewater system (IUWS) model, which gave satisfactory results in its calibration and validation processes, with ecological models. The IUWS is a mechanistic model that incorporated the river water quality model, a wastewater treatment plant (WWTP) with activated sludge technology, and discharges from the sewage system. The ecological status of the waterways was evaluated with the Andean Biotic Index (ABI), which was predicted using generalized linear models (GLMs). The GLMs were calculated with physicochemical results from the IUWS model. Four scenarios that would enhance the current ecological water quality were analyzed. In these scenarios, the inclusion of a new WWTP with carbon, and with carbon and nitrogen removal as well as the addition of retention tanks before the discharges of combined sewer overflows (CSOs) were assessed. The new WWTP with carbon and nitrogen removal would bring about a better restoration of the ecological water quality due to better nitrogen removal. The retention tanks would help to enhance the ecological status of the rivers during rainy seasons. The integrated model implemented in this study was shown to be an essential tool to support decisions in the Cuenca River basin management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.