Abstract

In urban areas, buried gas pipeline leakages could potentially cause numerous casualties and massive damage. Traditional static analysis and dynamic probability-based quantitative risk assessment (QRA) methods have been widely used in various industries. However, dynamic QRA methods combined with probability and consequence are rarely used to evaluate gas pipelines buried in urban areas. Therefore, an integrated dynamic risk assessment approach was proposed. First, a failure rate calculation of buried gas pipelines was performed, where the corrosion failure rate dependent on time was calculated by integrating the subset simulation method. The relationship between failure probability and failure rate was considered, and a mechanical analysis model considering the corrosion growth model and multiple loads was used. The time-independent failure rates were calculated by the modification factor methods. Next, the overall evolution process from pipeline failures to accidents was proposed, with the accident rates subsequently updated. Then, the consequences of buried gas pipeline accidents corresponding to the accident types in the evolution process were modeled and analyzed. Finally, based on the above research, dynamic calculation and assessment methods for evaluating individual and social risks were established, and an overall application example was provided to demonstrate the capacity of the proposed approach. A reliable and practical theoretical basis and supporting information are provided for the integrity and emergency management of buried gas pipelines in urban areas, considering actual operational conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.