Abstract

A node-by-node admission control and routing scheme for ATM networks is devised. The scheme is based on the subdivision of traffic into a number of classes, characterized by different performance requirements. At each network node, for all outgoing links, link capacity partitions are periodically assigned to the traffic classes, as the result of an optimization problem over a fixed time interval. Local access control rules compute the maximum number of connections of each class that a link can accept within the assigned capacity. Incoming call connection requests are forwarded in a hop-by-hop fashion. Each node traversed, first checks the presence of resources needed to accept a new connection and guarantee all quality of service (QoS) requirements. This is done by using the local access control rule. Then, it chooses the next node along the path on the basis of a distributed routing strategy. This minimizes a cost function accounting for local instantaneous information, as well as for aggregate information that is passed periodically among adjacent nodes. Two routing strategies are introduced. In the first scheme, a new call is rejected if, at a certain node along the path, there are not enough resources to guarantee QoS requirements, and no recovery mechanism is implemented. In the second scheme, an alternative path is looked for after the first failure. Simulation results are presented which show a comparison between the two proposed routing strategies. Comparison is also made between the proposed scheme and the other approaches. © 1997 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.