Abstract

In this study, integrated drought monitoring index (IDMI) was proposed as a tool to assess and monitor the spatio-temporal dynamics of agricultural drought during the northeast monsoon season for the period from 2000 to 2016 in Tamil Nadu state, south-eastern part of Indian peninsula. The IDMI is characterized as the principal component of precipitation condition index (PCI), soil moisture condition index (SMCI), temperature condition index (TCI), and vegetation condition index (VCI) derived from time-series satellite observations of climate hazards group infra-red precipitation with stations (CHIRPS), European space agency climate change initiative (ESA-CCI) and moderate resolution imaging spectroradiometer (MODIS). The study shows that in the year 2016, about 44.4 and 17.8% of Tamil Nadu state was under extreme and severe drought conditions, respectively. Sensitivity analysis of the study shows that PCI is the most influential parameter to IDMI, followed by VCI and TCI. The validation of IDMI with 3-month standardized precipitation index (SPI) by using Pearson correlation test shows a strong positive correlation between IDMI and 3-month SPI with correlation coefficient (r) value of 0.73 and 0.77 for the wet (2005) and dry year (2016), respectively. The study clearly demonstrates the potential of IDMI derived from time-series datasets of earth observation satellites as a tool in assessment and monitoring of spatio-temporal dynamics of agricultural drought. The proposed IDMI could be effectively used as a reliable tool to monitor agricultural drought and develop its mitigation strategies to minimise the adverse effects of drought on agriculture, water resources, and livelihoods of the people.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.